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Abstract

Depth information is an important attribute in a variety
of domains including but not limited to self-driving, aug-
mented reality, face unlocking etc. A variety of deep learn-
ing methods exist that aim to solve this problem using a
single camera (monocular). Moreover, methods based on
transformers dominate these methods in terms of acccuracy
currently. We aim to present and analyse different meth-
ods to solve monocular depth estimation problem. We also
aim to compare each method focusing especially on CNN-
based and transformer-based methods. We show on a public
dataset NYUDepth v2 that combining CNN and transformer
gives the best performance. We propose two approaches in
this direction. First, an end-to-end training of combined
CNN and Transformer network. Second uses knowledge
distillation of large transformer models to smaller CNN-
based networks.

1. Introduction
Monocular Depth Estimation (MDE) is a widely stud-

ied problem that aims to estimate the depth of each pixel
in the image using only one camera image (monocular) at
a given time. This is quite natural for humans as we utilize
additional information in the scene like the relative sizes of
other known objects in the scene, the appearance of objects
in varying lighting, shading and occlusions, surface textures
and focal fields etc. However computing a depth estimation
model is an ill-posed problem fundamentally because any
2D image could have been generated from an infinite range
of 3D scenes. Computational models for Monocular depth
estimation have traditionally used auxiliary information like
object sizes and location, interaction of objects with occlu-
sion and perspective and texture variations to name a few to
estimate depth.

Monocular depth estimation It is important especially
when stereo images are not available or other sensors like
Lidar are impractical or costly. Depth estimation helps to
understand the environment and helps to make better deci-
sions. It has wide applications in augmented reality to give

realistic views of the digital objects. Also, self-driving ve-
hicles uses depth information to detect objects and avoid
collisions.

There has been a lot of deep learning methods based on
CNN that tries to solve this problem. Recently, transformer
based models show promising accuracy in this domain. But
transformer-based model face a lot of challenges too. For
instance, they are difficult to train and tune. They require
a lot of data to converge. On the contrary, they provide
a global receptive field unlike CNNs. CNNs are gener-
ally easy to train and converge faster. We aim to explore
and experiment with methods that use both CNN and trans-
former based features simultaneously. Also, transformer
based models are many times big networks trained on large
amount of data to get state-of-the-art accuracies. But it
may not be practical to deploy such models on embedded
devices for real-time execution. Hence, we also propose
an approach to use knowledge distillation to transfer trans-
former based learning to a smaller CNN-based network. We
experiment and analyse the accuracies by using such meth-
ods.

We base our experiments on a widely used public dataset
called NYU-Depth V2 [16] dataset. The dataset com-
prises of video sequences from a variety of indoor scenes
as recorded by both the RGB and Depth cameras from the
Microsoft Kinect. It features 1449 densely labeled pairs of
aligned RGB and depth images, 464 new scenes taken from
3 cities and 407,024 new unlabeled frames.

We propose two such approaches and show that they out-
perform methods trained on single features. Our contribu-
tions can be summed up as follows:

1. We show that training an end-to-end network with
CNN and transformer achieves better performance
than doing a multi-stage training.

2. In cases, where end-to-end training is not practical, we
show knowledge distillation can be a viable method
to distill information from transformer model to small
cnn based networks.
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2. Related Work
2.1. CNN for monocular depth estimation

A lot of the initial MDE research was based on using
CNNs. One of the seminal works in this field was by Eigen
et al. [2]. They were the first to utilize a few fundamental
components in the single image depth estimation pipeline
which were later followed by many others. In addition to
proposing the concept of directly regressing over each pixel,
they had also proposed the approach of spliting the estima-
tion into two: one which estimates the global structure of
the input scene and ther other which refines this structure
with local information. The introduction of scale invariant
loss was also proposed to handle scale dependency of esti-
mation error.

The ideas proposed by Eigen et.al were later taken up by
Xu et al. [15] and Li et al[8]. with the addition of fusion of
multiple semantic layers of the CNN within a Conditional
Random Field (CRF) framework. Li et al. also proposed
the use of multi-scale CRFs and a cascade of CRFs, one for
each level.

2.2. Transformers for monocular depth estimation

One of the first attempts to use attention models for esti-
mating depth from monocular images were by Xu et al.[18]
where the structure from (Xu) [15] along with the use
of a structured attention model where the information ex-
changed between embedding of different scales were con-
trolled by the attention model. This particular approach op-
erates on the feature-level and fuses features from different
scales and enforces structure.

Another use of attention based models was in Yuru et
al. [7] where a supervised attention-based Context Aggre-
gation Network (ACAN) was proposed to estimate depth
maps. The method uses deep residual architecture, dilated
layer and self-attention modules for scale control with dense
prediction. The use of the self-attention module helps in
mapping the relation between every pixel which translate to
the attention weights. Also another key feature is the use of
image-pooling which combines image level information for
the depth estimation.

Iterative approaches in MDE by Ranftl et al. [14][13]
have used 3D movies as data source to learn from dataset
with varying parameters of environments like scale, range
of depth, aspect ratios etc. This had enabled the model to
do zero-shot cross-dataset transfer learning. They went to
propose hybrid and vision transformer based dense predic-
tion of depth.

2.3. Combining CNN and Vision Transformer for
monocular depth estimation

We further explored the idea proposed by Ranftl et al. in
combining CNNs with transformers. Specifically in the hy-

brid model, non-overlapping patches of the input RGB im-
age is converted into tokens by passing the patches through
a ResNet-50 feature extractor. These embeddings along
with the positional embedding are they passed through mul-
tiple transformer stages. These tokens are then reassem-
bled at different resolutions into an image-like representa-
tion. The hybrid model extracts features at 1

16 scale of in-
put resolution, which is a much deeper resolution than most
methods with convolutional backbones.

Our reasoning for the use of CNNs and transformers in
this way is the presence of inductive bias and low sample
complexity in CNNs. CNNs would manage to produce a
good feature representation of the data with very few sam-
ples. These features when passed into a transformer and
trained with supervision should be able to match the accu-
racy of a purely transformer model with fewer data samples.

2.4. Teacher Student Network for supervised learn-
ing tasks

Lowering model complexity and computation while hav-
ing highly accurate outputs from all deep learning models
have been under exploration for a long time. Some of the
ways of simplifying the model have been model pruning[4]
and quantization [12]. We explore another strategy called
knowledge distillation proposed by Hinton et al. [5], which
aims to transfer knowledge from a heavier, more accu-
rate teacher network onto a lighter student network. This
method was initially proposed for image classification and
have since then been diversified into other tasks like seman-
tic segmentation, object detection and depth prediction[11].
Initially distillation strategies revolved around distiling the
class probability distribution for each pixel. Shen et al. [9]
later propsed pair-wise and holistic distillation, which is a
more generic, structured knowledge distillation framework
for dense prediction. The holistic distillation consists of
conditional adversarial learning and the use of a discrimi-
nator.

2.5. Datasets

Here we highlight some of the major datasets we came
across for training model for MDE. Such datasets have been
created using ground truth depth estimation mechanisms
like disparity, LiDAR, structured light among others.

NYU-v2 dataset was introduced in [16], containing 1449
RGB images with dense depth labels. It contains a total
of 407K frames of 464 scenes. KITTI dataset[3], has two
versions with 394 road scenes having RGB stereo sets and
GT depth maps. They have been captured using the Velo-
dyne laser scanner. Pandora[1] contains 250K full resolu-
tion RGB and depth images. SceneFlow[10] in one of the
first large-scale synthetic datsets having 39K stereo images
with corresponding disparity, depth , optical flow and seg-
mentation masks. Additional datasets have been listed in
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Table 1.

Dataset Labelled images Annotation
NYU-v2 1449 RGBD + segmentation
KITTI 94K RGBD + optical flow

Pandora 250K RGBD
SceneFlow 39K RGBD + segmentation

DIML Indoor[6] 220K RGBD
ReDWeb[17] 3600 stereo

Table 1. Some of the datasets for monocular depth estimation

3. Methods
3.1. Combining CNN and Transformer

We investigate the effectiveness of combining CNN and
Transformer architecture for learning the task of monocu-
lar depth estimation in two ways. We investigate that this
would leverage the deep representational learning of CNN
and attention modules of Transformer to encode global con-
text. We investigate two methods for fusion. In the former
method, we train both the encoder and the transformer sep-
arately. Our hypothesis is that since the Vision Transformer
is applied to sequential patches of image, it is better to keep
the two components independent. The second architecture
is the End to End architecture designed for dense prediction
task where we fine-tune our CNN model and transformer
model in an end to end fashion. Further details can be found
in the experiment section.

3.2. Teacher Student Network

Knowledge Distillation is an approach to train smaller
networks (student) using models trained on large amount of
data (teacher). It has been observed that the model con-
verges faster than if trained from scratch using the large
amount of data. The reason for such behaviour is that the
smaller model may not have enough representation capabil-
ity to learn from the full data. Hence, it is helpful to trans-
fer the learning using soft labels. Since, it may be impracti-
cal to train CNN-Transformed based models end-to-end, we
propose knowledge distillation to capture the power of both
transformer and CNN features. We try to distill informa-
tion from a large transformer based model to a small CNN
based model with significantly less number of parameters.
This can also solve another problem that we would like to
highlight here. The ground truth depth data has errors in
the depth value as captured from the Kinect camera. This is
due to the inherent sensor noises, limited range issues etc.
Due to this , we can see black patches in the ground truth
itself (figure ). Hence, it becomes difficult for the model
to learn that missing information especially with a smaller
network. The larger network is able to learn this with large
amounts of data. Hence distilling that information can help
to achieve better quality outputs. The loss function that we

used is as follows:

Ldepth = α

√√√√ 1

T

∑
i

g2i −
λ

T 2

(∑
i

gi

)2

where gi = log d̂i − log di with the ground truth depth di
and the predicted depth d̂i. We set λ and α to 0.85 and 10,
same as [cite transdepth]

4. Experiments

4.1. Combining CNN and Transformer

The input image is first resized into 224 x 224 x 3. In our
results, we finetune the encoder ResNeXt-101 backbone on
NYU depth dataset. We found that using higher capacity
encoder like the one we have used performs significantly
better than the same encoder that was only trained on Ima-
geNet. For combining the output of CNN with vision trans-
former, we use the output from a CNN model (ResNet back-
bone) and feed it into a vision transformer capable of pre-
dicting dense output. The patch embedding layer is applied
to final feature output of the CNN. This patch embedding’s
kernel should be pxp, which means that input sequence is
obtained by simply flattening the spatial dimensions of the
feature map and projecting to the Transformer’s dimension.
The only difference between the two proposed methods is
that in the first one, the output of the encoder is trained sep-
arately to predict the depth whereas the second trains the
combined network end to end.

4.2. Teacher Student Network

We design the following experiments to implement and
analyse this approach.

1. First, we fine-tune a small CNN based network [cite]
using 1449 labelled samples of NYUDepth v2 dataset.
This acts as the baseline for comparison.

2. Second, we take a pre-trained transformer network
[13] and fine-tune the pretrained small CNN network
using ground truth and the output of transformer net-
work. We follow the architecture as described in the
[figure ]. We use two loss terms to help the model
learn from ground-truth as well as the output of trans-
former network. We try different loss functions to train
the models.

3. Third, we also experiment with filling the missing in-
formation in the ground-truth relying on the output of
the transformer network and then fine tuning on the
dense data obtained.

3
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RGB Input

Encoder Decoder

Smaller Network*

Loss 2

Loss 1

*https://arxiv.org/abs/1907.01341

GT

Teacher

Figure 1. Teacher Student Network Architecture

Ground Truth

CNN + ViT

4.3. Results and Discussion

4.3.1 CNN + Transformer method

In Figure 3.2, we can see that quite a lot of the ground
truth have a series of black patches. This happens when for
a certain region Kinect’s speckle pattern emitter doesn’t get
back to the Kinect’s IR camera. This can be due to a number
of factors including the surface being too reflective or that
surface not visible to the IR camera and pattern emitter at
the same time. The CNN + ViT output shows that the model
is able to predict a smooth output directly from the RGB
image. Most of the surfaces in the images have the correct
level of depth and has learnt to group close-by pixels in the
RGB image, similar depth values. Although, this is a valid
mapping for most surfaces and objects, it does not hold true
always. For instance, the bike in the second example has
different levels of depth at different parts of it which the
models fails to assign.

we evaluate End to End training and Multi-Stage training

across all metrics. For metrics which rely on relative dis-
tance between ground truth and predicted pixel values like
LOG RMS and SILOG (Scale invariant logarithmic error)
[2] given by:

D (y, y∗) =
1

n

∑
i

d2i−
1

n2

(∑
i

di

)2

di = log yi−log y∗i

(1)
where smaller value is better. On the other hand, metrics
which measure accuracy with threshold t: percentage (%)
of d∗i subject to 2,

max

(
d∗i
di

,
d̃i
d⋆i

)
= δ < t

(
t ∈

[
1.25, 1.252, 1.253

])
(2)

where a higher value is better. In Figure 2, we can see that
End to End training outperforms Multi-Stage architecture in
all metrics.
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Figure 2. Quantative results comparing End to End architecture vs Multi Stage architecture

4.3.2 Teacher Student Network

The results can be seen in table 2. The Baseline Fine-
tuned model is the Midas based CNN network finetuned on
NYUDepth v2 dataset. We see that it is able to achieve
RMSE of 0.619 and Delta1 of 0.701. This acts as the base-
line for the other experiments that we wish to perform. The
second model ”Finetuned w/ Teacher” is the model trained
with Teacher supervision on the same CNN network. We
used the loss function as described in the Section 3.2 and
architecture as described in 1. We tried different weights to
add both the losses. The best is shown in table as RMSE of
1.151 and Delta1 of 0.417. Ideally, we hoped to achieve bet-
ter performance using knowledge distillation but the results
are contrary to that. We believe that this could happen be-
cause of the less data used for fine-tuning the model. Since,
the loss is changed than the pretrained model was trained
on, it might take a little more data and time to converge.
Some of the qualitative results were promising showing that
the model did learn something. But more research and tun-
ing might be required to make it better than the baseline.
As we described earlier, the ground-truth contains error in
depth values especially missing values. Hence, the models
may not be able to learn those values if loss only calculates
error with ground-truth. Hence, we tried another way to
train the model. We filled the missing values with the output
of the transformer based model. The intuition was to give
explicit guidance to the network and use only one loss term.
We hoped that it would make it easy for the model to learn
slightly better. But as can be seen in the table, the model
could only reach at the same level as using 2 loss terms.
This suggests that that the benefit of filling the values was
outweighed by not giving the full output of the transformer
model to learn using an extra loss term.

Model RMSE Delta1 MAE
Baseline fine-tuned 0.619 0.701 0.470

Fine-tuned w/ Teacher 1.151 0.417 0.817
Filling unknown 1.181 0.407 0.907

Table 2. Results comparison among baseline and Teacher supervi-
sion on NYUDepth-v2

4.4. Conclusion

We analyse the effect of using CNN and transformer to-
gether in the domain of Monocular Depth Estimation. We
show qualitatively and quantitatively that end-to-end learn-
ing using CNN+Trasnformer achieves better performance.
We also show analysis of knowledge distillation using two
approaches. We distill the information of a larger trans-
former network to a smaller CNN network and compare the
performance with the model finetuned directly on the data.
We also fill the missing values in the ground-truth with the
transformer output values and finetune the network. Ideally,
we hoped to show better performance but due to time, data
and GPU constraints, we were not able to beat the base-
line. We aim to use larger data to finetune the network with
Teacher supervision. We also aim to experiment with more
knowledge distillation approaches apart from adding loss
terms. For instance, learning from multi-layer outputs of
the bigger model and not just the final output.
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