
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#3160
ECCV

#3160

Recurrent Siamese Network for Object Tracking

Jeet Kanjani

Paper ID 3160

Abstract. The problem of arbitrary object tracking has traditionally
been tackled by learning a model of the object’s appearance and mo-
tion during the online phase. We quip a basic tracking algorithm using
a Siamese network composed of fully convolutional network which incor-
porates a recurrent layer at the end. The convolutional recurrent model
learns a motion model and leveraging the power of Siamese network helps
in achieving robust tracking. The network is trained end to end on IL-
VRSC17 for similarity learning in videos. We show competitive results
on well known benchmarks. . . .

Keywords: object-tracking, Siamese-network, deep-learning

1 Introduction

We tackle the problem of arbitrary object tracking in videos which receives
a single supervision in the initial frame for the object’s location. Making the
tracking robust to all types of objects makes it impossible to train a specific
detector.

The problem of arbitrary Object Tracking has traditionally been tackled by
learning a model of the Object’s appearance online which compromises on the
time complexity of the algorithm. The training is done online with examples
extracted from the video in papers like MDNET[1] which used online Stochastic
Gradient Decsent. Despite having low frame rates these models can learn only a
simple model due to the lack of supervised data available at that time.

With the advent of huge datasets like the ever-growing imagenet, the descrim-
inative power of CNN models is extensively being used to extract useful embed-
dings. These features were incorporated in a Siamese network to show state of
the art result in multiple benchmarks in object tracking by Bertinetto[2]. The
simplicity of the architecture enables it to operate at higher frame rates which
makes it a strong area for doing further research in the domain.

Despite showing good results the tracker by Bertinetto[1] struggles with han-
dling occlusion and confusion due to the lack of motion model incorporated in
the model. The problem of re detection of the object after it is occluded is
tackled in this paper by incorporating a recurrent architecture. The network for
handling re detection is inspired by Niall[3]. This is the key contribution of the
paper.

We train a fully convolutional network incorporating LSTM layers at the end
in the offline phase on ILVRSC17 train dataset. Our approach focuses on finding



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#3160
ECCV

#3160

2 ECCV-18 submission ID 3160

the exemplar in the search region using the similarity parameters learned by the
network. The network compromises on the frame rate but still achieves close to
real time performance.

2 Deep Similarity for Tracking

The proposed network architecture computes the similarity between the helps in
proposing propose to learn a function f(z,x) that computes the similarity between
the exemplar and the search region.

2.1 Input

The inputs consists of an exemplar image Z and a search image X of dimension
127x127 and 255x255 respectively.

2.2 Convolutional Network

In general, CNN processes the input using series of layers composed of convo-
lution, pooling, non linear activation function steps. The parameters are iden-
tically applied to the exemplar and search images during training and testing.
For an input x, we get a feature vector f = C(x). The fully convolutional net-
work is very similar to the architecture proposed by Krizhevsky et al[4]. During
inference the temporal framess = s1s2....sT of length T where st is the image
at time t is passes through the these layers resulting in f t = C(st), where f t

is the vectorized representation of the CNN’s final layer activation maps. The
vector f t is passed forward to the recurrent layer, where it is projected into a
low-dimensional feature-space and combined with the information from previ-
ous time steps. Dropout[5] is used between CNN layers and recurrent layers to
reduce over-fitting.

2.3 RNN layers

The RNN layers incorporated are useful for learning a motion model from the
temporal information in the video sequence. We can incorporate recurrent con-
nections between the CNN and temporal pooling as follows:

ot = Wif
t + Wsr

t − 1
rt = Tanh(ot)

The output ot ∈ Re−1at each time step is a linear combination of the vectors,
f t ∈ RNx1 containing information on the current input image, and rt−1 ∈ Rex1,
containing information on RNN’s state at the previous time step.



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#3160
ECCV

#3160

ECCV-18 submission ID 3160 3

2.4 Temporal Pooling

The output from the each of the LSTM unit pooled to produce a single temporal
component. We use mean-pooling over the temporal dimension to produce a
single feature vector v representing the object’s appearance averaged over the
whole input sequence as follows:

vs =
1

T

∑T
t=1 o

t

2.5 Siamese Network

The network is fully-convolutional with respect to the candidate image x similar
to Bertinetto[1]. The advantage of a fully convolutional network is that, instead
of a candidate image of the same size, we can provide as input to the network
a search of larger size and it will compute the similarity at all translated sub-
windows on a dense grid in a single evaluation.Deep Siamese conv-nets have
previously been applied to tasks such as face verification [6][7], keypoint descrip-
tor learning [8] and one-shot character recognition[9].

CNN CNN CNN

LSTM LSTM LSTM

Temporal Pooling

CNN CNN CNN

LSTM LSTM LSTM

Temporal Pooling

*

Process

x

Process

x

Process

x

Z Z Z

Fig. 1. Fully-convolutional Siamese architecture. The architecture is fully convolutional
siamese network with recurrent layers and temporal pooling. The output is a scalar-
valued score map whose dimension depends on the size of the search image. This
enables the similarity function to be computed for all translated sub-windows within
the search image in one evaluation. In this example, the red and blue pixels in the
score map contain the similarities for the corresponding sub-windows. Best viewed in
colour.



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#3160
ECCV

#3160

4 ECCV-18 submission ID 3160

2.6 Dataset Curation

During training we adopt exemplar images that are 127x127 and search images
that are 255x255 pixels. Images are scaled such that the bounding box, plus an
added margin for context, has a fixed area. More precisely, if the tight bounding
box has size (w,h) and the context margin is p, then the scale factor s is chosen
such that the area of the scaled rectangle is equal to a constant

s(w + 2p) x s(h+2p) = A

We use the area of the exemplar images A = 1272 and set the amount of context

to be half of the mean dimension p =
(w + h)

4
. Exemplar and search images for

every frame are extracted offline to avoid image resizing during training. In a
preliminary version of this work, we adopted a few heuristics to limit the number
of frames from which to extract the training data. For the experiments of this
paper, instead, we have used all 4417 videos of ImageNet Video, which account
for more than 2 million labelled bounding boxes.

Table 1. Architecture of embedding function whose Convolutional part is similar to
the Krizhevsky et al. [4].

Activation size
Layer Support Chan. map Stride for exemplar for search chans.

127 x 127 255 x 255 x3
conv1 11 x 11 96 x 3 2 127 x 127 255 x 255 x3
pool1 5 x 3 2 29 x 29 61 x 61 x96
conv2 5 x 5 256 x 48 1 25 x 25 57 x 57 x96
pool2 3 x 3 2 12 x 12 28 x 28 x256
conv3 3 x 3 384 x 256 1 10x10 26 x 26 x192
conv4 3 x 3 384 x 192 1 8 x 8 24 x 24 x192
conv5 3 x 3 256 x 192 1 6 x 6 22 x 22 x128
lstm1 256 6 x 6 22 x 22 x128
lstm2 256 6 x 6 22 x 22 x128

2.7 Tracking algorithm

Since our purpose is to prove the efficacy of our fully- convolutional Siamese
network and its generalization capability when trained on ImageNet Video, we
use an extremely simplistic algorithm to perform track- ing. Unlike more so-
phisticated trackers, we do not update a model or maintain a memory of past
appearances, we do not incorporate additional cues such as opti- cal flow or
colour histograms, and we do not refine our prediction with bounding box re-
gression. Yet, despite its simplicity, the tracking algorithm achieves sur- prisingly



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#3160
ECCV

#3160

ECCV-18 submission ID 3160 5

good results when equipped with our offline-learnt similarity metric
Online, we do incorporate some elementary temporal constraints: we only search
for the object within a region of approximately four times its previous size, and a
cosine window is added to the score map to penalize large displacements. Track-
ing through scale space is achieved by processing several scaled versions of the
search image. Any change in scale is penalized and updates of the current scale
are damped.

3 Evaluation

We evaluate our results on OTB-13 benchmark which considers the averageper-
frame success rate at different thresholds: a tracker is successful in a given frame
if the intersection-over-union (IoU) between its estimate and the ground-truth
is above a certain threshold. Trackers are then compared in terms of area under
the curve of success rates for different values of this threshold. In addition to the
trackers reported by [11], in Figure 3 we also compare against seven more recent
state-of-the-art trackers presented in the major computer vision conferences and
that can run at frame-rate speed: Staple, LCT, CCT, SCT4, DLSSVM NU,
DSST and KCFDP. Given the nature of the sequences, for this bench- mark
only we convert 25hyper-parameters (for training and tracking) are fixed.

Fig. 2. Success plots on OTB-13

4 Conclusions

We propose a novel algorithm for arbitrary object tracking using a siamese net-
work with recurrent layers and temporal pooling. We show competitive results
on well known benchmarks.



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#3160
ECCV

#3160

6 ECCV-18 submission ID 3160

References

1. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. CoRR abs/1510.07945 (2015)

2. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional siamese networks for object tracking. arXiv preprint arXiv:1606.09549
(2016)

3. McLaughlin, N., Martinez del Rincon, J., Miller, P.: Recurrent convolutional net-
work for video-based person re-identification. (2016)

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6) (2017) 84–90

5. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1) (January 2014) 1929–1958

6. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. 2014 IEEE Conference on Computer Vision
and Pattern Recognition (2014) 1701–1708

7. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. CoRR abs/1503.03832 (2015)

8. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional
neural networks. CoRR abs/1504.03641 (2015)

9. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image
recognition. (2015)


